The Essential Fuel Tests You Need To Know About

To Save Yourself Time, Money & Headaches

Regular fuel inspections are an important part of good housekeeping and essential to staying ahead of any shifts in stored fuel condition. But which ones to do? Sensory (sight and smell) fuel inspections are better than nothing. However, analytical fuel testing by an accredited lab is the only way to really know how your fuel is doing in storage, and the best way to track it over time.

These are the most important fuel tests you need to consider for your stored fuel. We'll summarize what each test does, what problems they can detect, and what you should do if your stored fuel comes up short.

Water and Sediment (ASTM D-2709)		
What is this test? How do you run it?	What problems can it predict or detect?	What to do if your fuel fails?
Measures both water and sludge sediment in samples of stored fuel.	Water is necessary to support microbe growth in fuel and storage tanks. Water can contribute to tank corrosion.	Fuel cleaning, utilizing both chemicals and mechanical filtration, will remove the water
A sample of diesel fuel is centrifuged to force any water and sediment in the sample to the bottom of a tube. The volume of water and sediment is then measured.	Presence of sediment contributes to injector fouling and engine deposits and is an indicator of possible fuel instability.	and sediment and should enable the fuel to meet water and sediment test standards.
Healthy fuel that meets legal specifications is expected to have a water/sediment content below a certain % level.	Presence of both can predict operational problems in emergency or critical-use equipment.	

Microbial Presence/Count		
What is this test? How do you run it?	What problems can it predict or detect?	What to do if your fuel fails?
Two test methods, one more rigorous than the other. Microbial presence testing utilizes cultured test strips to give a qualitative indication of the presence of microbes in a sample.	Microbial presence in fuel is important to monitor on a regular basis to ensure microbial colonies do not grow to problematic levels.	Application of biocide is the only way to effectively reduce microbial counts in fuel.
Microbial Count testing uses phase contrast microscopy and a machine like a Coulter Counter to mechanically count the number of microbial bodies within that pass through a scanner.	Microbiological growth in fuel is responsible for a myriad of expensive problems – fuel degradation, corrosion, filter plugging and biomass formation	Periodic dosing of stored fuel with biocides will help keep microbial counts below problematic levels.

Water Presence & Content (Stick Test Karl Fischer)		
What is this test? How do you run it?	What problems can it predict or detect?	What to do if your fuel fails?
There are multiple methods for determining water	Water content contributes to tank	Excessive free water may be
content in fuel, with Karl Fischer Titration (KF)	corrosion and provides an essential	mechanical removed (pumped
being the dominant common.	medium for microbe growth in fuel.	out), followed by treatment with
		a water scavenger to remove
Karl Fischer tests give a qualitative measurement of water content as a percentage.	Increases the risk of phase separation in stored ethanol-blended gasoline, which can	trace remnants.
	quickly destroy the fuel's viability.	Excessive dissolved or entrained
Presence of free water (i.e. a tank water bottom		water can be treated with a
layer) can be confirmed and measured through	Excessive water content may also damage	demulsifier chemical to make
the use of water finding paste ("tank sticking").	fuel injectors and cause problems with common rail diesel engines	the water drop out of the fuel, enabling it to be removed.

pH Level		
What is this test? How do you run it?	What problems can it predict or detect?	What to do if your fuel fails?
Measurement of the pH level of a fuel sample by a	Low pH (acidic) readings below 5.6 may	Excessive pH level is a primary
pH meter.	indicate accelerated microbial growth in	indicator of microbial presence,
	the fuel, as microbes produce acidic	which must be remediated by
On the pH scale of 0 – 14.0, 7.0 is neutral, while	byproducts that lower fuel pH.	the removal of water bottoms
healthy fuel will almost always fall between 5.6		and the judicious application of
and 8.	High acid levels in stored fuel are	biocide treatment. Highly acidic
	responsible for accelerating the rate of	fuel itself may need to be
	degradation of the fuel. They also	disposed of, unless it is diluted
	contribute to tank corrosion and damage.	with fresh fuel before use.

Cetane Index		
What is this test? How do you run it?	What problems can it predict or detect?	What to do if your fuel fails?
Estimation of the cetane rating of diesel fuel.	Poor cetane index/rating of diesel fuel	Cetane deficiency is easy to
	contributes to a host of combustion	remedy through application of
Involves calculations based on the measurement	problems in the engine – poor starting	chemical cetane improvers to
of the fuel's density and distillation temperatures.	rough running, black smoke production	raise the fuel's cetane rating
	from incomplete combustion.	from 2-6 points.

Sulfur Content (ASTM D-2622)		
What is this test? How do you run it?	What problems can it predict or detect?	What to do if your fuel fails?
There are multiple methods for determining sulfur	Sulfur content in excess of 15 ppm may be	There are no viable chemical or
content in fuels. D-2622 utilizes X-ray fluorescence	the fuel at risk for violating applicable	mechanical solutions for
to give an accurate measurement of sulfur	sulfur content laws, depending on what the	lowering sulfur content.
content.	fuel is used for.	Dilution of the fuel may be
		possible but depends upon
This is an essential test for confirming that stored	High sulfur content in diesel fuel also	starting sulfur content.
ultra-low sulfur diesel (ULSD) fuels do not	shortens the life of DPF systems, increasing	
maximum sulfur content allowable by law.	maintenance costs.	If this is not possible, the fuel
		may need to be disposed of.

Fuel Stability (ASTM D-2274)		
What is this test? How do you run it?	What problems can it predict or detect?	What to do if your fuel fails?
Also known as Oxidative or Accelerated Stability. Measures the storage stability of fuel.	Test predicts fuel instability because unstable fuel will produce higher quantities of these insolubles measured on the test.	Fuel should be polished or cleaned to remove existing insoluble and sludge.
Fuel sample is heated and exposed to oxygen to simulate fuel oxidation in storage. Insolubles like sludge are produced in the process and measured at the end of the test.	Such fuels will darken and stratify in storage at a faster rate, producing sludge and reducing combustion viability. Also will be more likely to produce injector and engine deposits.	Fuel should then be chemically treated with a stabilizer to halt further degradation and extend its effective storage life.

Running these essential tests a la carte can cost upwards of \$2000 at an accredited lab. That's sticker shock for some, but may not be all that much when compared to the cost of large volumes of fuel you could be in the charge of. Factor in the costs incurred if the fuel doesn't perform in a critical emergency, and the perspective on the cost of testing shifts.

Partnering with someone who has existing relationships with accredited testing labs is also a great way to get these done, but at a fraction of the cost. Customers of the Bell FTS Program for preventive fuel maintenance can have these tests run for a fraction of the cost.

If any of this resonates with you, talk to us!

