Essential Fuel Tests Healthcare Facilities Need To Know About

To Save Time, Money & Headaches

Hospitals & healthcare facilities rely on stored fuel to execute the critical emergency backup functions that ensure they can continue giving critical care at all time. Given how important these services are to their patients & their customers, preserving the health of this stored fuel is of utmost importance – so much so that many healthcare facilities are governed by specific regulations that require them to pay more attention to their stored fuels and emergency generators than other types of users. An example of this might be the AHCA requirement to test backup generators at least once a month for at least 30 minutes.

For stored backup fuel, AHCA guidelines mandate the fuels be tested annually to show they meet full ASTM D-975 requirements. This slate of more than ten tests helps define what legally can be called 'diesel fuel'. So at a minimum, health care facilities would need to ensure their fuel meets this standard. But if the goal is to reduce the likelihood of stored fuel problems as much as possible, then the D-975 slate may not be the entirety of the answer. There are other tests that may have hospitals and health care facilities specific insight as to how the condition of their stored fuel might be changing and leading to potentially disasterous problems.

What tests do the D-975 slate cover? Flash point, Water and sediment content, Distillation properties, Viscosity, Ash%, Sulfur content, Copper strip corrosion, Cetane number or index, Cloud point/cold filter plug point, carbon residue, and lubricity. For entities not required to do the full D-975 slate, it would normally be recommended to do Cetane Index, Water/Sediment Content, and Sulfur Content as part of a regular test slate to keep track of their fuel's condition. Health care facilities have this covered.

In addition to D-975 as specified by AHCA, these are the essential fuel tests that health care facilities should consider for their stored fuel. We'll summarize what each test does, what problems relevant to their needs the test can detect, and what should happen if a test result comes up short.

Test #1: Microbial Presence

Microbial Presence/Count		
What is this test? How do you run it?	What problems can it predict or detect?	What to do if your fuel fails?
Multiple test options, ranging from simple	TANK CORROSION from strong and weak	Application of biocide to the fuel
and quick to more rigorous.	acids produced by microbes in the storage	in the storage tank is the only
	tank.	way to effectively reduce
Cultured test strips are easy to use and give		microbial counts in fuel.
a qualitative (yes/no) indication of the	FUEL DEGRADATION from being consumed	-
presence of microbes in a sample.	by microbes during their life cycle.	Mechanical fuel processing to remove biomass and dead
"Fuel Stat" test kits give a immediate and	BIOMASS FORMATION, FILTER PLUGGING	microbial presence after biocide
semi-quantitative reading of specific kinds of	DEPOSIT FORMATION which are, at the least,	application. This will reduce
microbes that may be present in the fuel and	a hassle, and at worst, can be a major cause	future filter plugging and remove
water bottoms.	of both waste time & resources and lost engine performance.	some of the existing precursors for future fuel instability.
ATP tests also indicate not just the presence		
of microbes but how many.	EMERGENCY EQUIPMENT FAILURE from the reduction in fuel ignition and combustion	Use of biomass dispersants & anti-corrosion treatments to help
Microbial Count testing is done by	quality. Additionally, the "out of sight, out of	remove biomass and microbial
submitting fuel samples to a certified lab and	mind" nature of storage tank contamination	presence from storage tank
uses phase contrast microscopy and a	coincides with the purpose of	surfaces and prevent re-
machine like a Coulter Counter to	emergency/backup equipment – a health	inoculation of the fuel supply.
mechanically count the number of microbial	care facility can't predict exactly when they'll	
bodies within that pass through a scanner.	be called on for use in a critical situation.	
Microbial Presence /Count testing is vital to ke	ening on top of the most damaging single eleme	nt in the universe of fuel storage

Microbial Presence/Count testing is vital to keeping on top of the most damaging single element in the universe of fuel storage. Regular monitoring of microbial counts is a best practice for health care facilities to enable sound decision making on how and when to utilize biocide treatment in the course of ensuring their stored emergency fuel stays sound.

Test #2: Water Content

Water Presence & Content (Stick Test Karl Fischer)				
What is this test? How do you run it?	What problems can it predict or detect?	What to do if your fuel fails?		
There are multiple methods	TANK CORROSION: Water content	Excessive free water should be mechanical removed		
for determining water content	contributes to tank corrosion	(pumped out or drained).		
in fuel, both in-field testing	through multiple chemistry avenues.			
and lab tests.		Consider incorporating the use of water scavenging fuel		
	MICROBIAL GROWTH: Water	treatments to remove trace remnants of water in the		
In the field, presence of free	provides an essential medium for	storage tank.		
water (i.e. a tank water	microbial growth in stored fuel.			
bottom layer) can be		Excessive dissolved or entrained water can be treated		
confirmed and measured	FUEL DAMAGE IN STORED	with a demulsifier chemical to make the water drop out		
through the use of water	GASOLINE: Increases the risk of	of the fuel, enabling it to be removed by mechanical		
finding paste ("tank sticking").	phase separation in stored ethanol-	means.		
	blended gasoline, which can quickly			
For a more qualitative	destroy the fuel's viability.	If excessive free water (> 0.25 inches by stick method)		
measurement, the Karl Fischer		can found, consider modifying your tank monitoring		
lab test gives a qualitative	EQUIPMENT DAMAGE: Excessive	procedures to regularly check for water presence at		
measurement of water	water content may also damage fuel	least monthly. Tank should always be checked		
content as a percentage of the	injectors and cause problems with	manually – do not rely solely on in-tank water		
fuel.	common rail diesel engines	monitoring equipment. Always verify by another		
		method.		
Testing for Water Presence is an	essential element of proper stored fuel	and tank maintenance. Even though water/sediment		
content is required by D-975, ch	ecking for water manually at regular inte	rvals is easy to do and can head off many problems.		

Test #3: Fuel/Water pH Level

What is this test? How do you run it?	What problems can it predict or detect?	What to do if your fuel fails?
Measures the acid/base level of a fuel sample and/or water bottom samples from the tank.	MICROBIAL GROWTH: Low pH (acidic) readings below 5.6 may indicate	Consistently acidic pH readings, when taken as part of a monitoring
0 is acid whereas 14 is base(ic). On the pH scale of 0 – 14.0, 7.0 is neutral, while healthy fuel will almost always fall between 5.6 and 8.	accelerated microbial growth in the fuel, as microbes produce acidic byproducts that lower fuel pH.	program, should be an indicator that additional action needs to be taken to head off potential problems.
The pH scale is logarithmic, meaning each increment of value going toward the acid end of 0.0 increases in size. Therefore, there's a much greater difference in going from, say, a	TANK CORROSION: The presence of acids in fuel and water bottoms FUEL DEGRADATION: High acid levels in stored fuel are responsible for	Removal of water bottoms and treatment of the tank with biocide to kill microbes that created the acidic environment.
2.1 pH to a 2.0 compared to going from a 5.1 to a 5.0 pH. Use a pH meter to check it.	accelerating the rate of degradation of the fuel. They also contribute to tank corrosion and damage.	Highly acidic fuel itself may need to be disposed of, unless it is diluted with fresh fuel before use.

if the storage tank holds fuel needed to execute emergency services.

Test #4: Fuel Stability

What is this test? How do you run it?	What problems can it predict or detect?	What to do if your fuel fails?
Also known as Oxidative or Accelerated	FUEL INSTABILITY : The Fuel Stability test predicts	Fuel should be polished or
Stability.	upcoming fuel instability because unstable fuel	cleaned to remove existing
	produce higher quantities of measurable insolubles.	insoluble and sludge.
Measures the storage stability of fuel.		
	REDUCED COMBUSTION PROPERTIES: Unstable fuel	Fuel should then be
Fuel sample is heated and exposed to	with high level of insoluble do not combust as freely	chemically treated with a
oxygen to simulate the process of fuel	or cleanly as fresh, stable fuel does.	stabilizer to halt further
oxidation that occurs in real life storage.		degradation and extend its
Insolubles like sludge are produced in	INJECTOR AND EQUIPMENT DEPOSITS, LEADING TO	effective storage life.
the process and measured at the end of	PERFORMANCE ISSUES AND ELEVATED BLACK	
the test.	SMOKE EMISSIONS : Unstable fuel predicted by the	
	D-2274 test will darken and stratify in storage at a	
	faster rate, producing sludge and reducing	
	combustion viability. These heavy fuel elements	
	form performance-robbing deposits in injectors and	
	engine areas. They also produce elevated levels of	
	black smoke emissions.	
	PERFORMANCE UNCERTAINTY FOR CRITICAL	
	EQUIPMENT : Fuels that are severely unstable may	
	not be able to sustain proper engine operation,	
	which may be disasterous for a hospital providing	
	essential/emergency services.	

Fuel Stability is an essential test to run because it gives a direct predictive indicator of a stored fuel's ability to withstand degradation over time. This is essential information for hospitals and health care facilities that use stored fuel, if they want to minimize unexpected problems. Tabulating fuel stability data gives them a useful running picture of the state of their stored fuel.

Combining these tests with the required ASTM D-975 slate will give hospitals and health care facilities the best and most accurate picture of their fuel's condition at any given time. Given what's at stake for these facilities, they are well worth considering.

Yet, running these essential tests a la carte can cost upwards of \$1000+ at an accredited lab. That may be sticker shock for some health care purchasing or operations managers, but may not be all that much when compared to both the costs of large volumes of stored emergency fuel and the tremendous costs of failure should their fuel not perform when called upon to do so. Factoring in the additional potential cost incurred if a health care facility cannot provide essential services in an emergency because their stored fuel doesn't perform as needed, and the perspective on the cost of this kind of testing shifts significantly.

Health care facilities can reduce these costs by partnering with someone who has existing relationships with accredited testing labs - a great way to get these done, but at a fraction of the cost. Customers of the Bell FTS Program for preventive fuel maintenance can have these tests run for a fraction of the cost.

